Название спецкурса на русском языке
Основы теории дислокаций
Перевод названия курса на английский язык
Fundamentals of Dislocation Theory
Авторы курса
Горбачев Владимир Иванович
Целевая аудитория
5 курс
Подразделение
[Кафедра механики композитов]
Семестр
Полугодовой, осень
Тип курса
Спецкурс по выбору кафедры
Аннотация
Идеальный кристалл. Решетка Браве. Реальный кристалл. Дефекты кристаллической структуры. Точечные и линейные дефекты. Дислокации. Что понимается под плотностью дислокаций? Размерность плотности дислокаций. Влияние дислокаций на свойства вещества. Зависимость прочности металлов от плотности дислокаций. Макроскопическое моделирование дислокаций на примере трубчатом образце. Пример винтовой дислокации. Напряженно-деформированное состояние и перемещения в точках трубки от винтовой дислокации. Вектор Бюргерса и линия дислокации в случае винтовой дислокации. Решения уравнений теории упругости с особенностями. Задача Кельвина. Силовой фактор в задаче Кельвина. Тензор Кельвина. Определение перемещений в однородной, изотропной среде в случае заданной распределённой нагрузки на линии, поверхности и в объёме. Решения с особенностями высшего порядка. Источники, как силовые факторы, приводящие к решениям с особенностями высшего порядка. Матрица источников. Двойная сила без момента и с моментом. Центр дилатации. Центр вращения. Определение перемещений в среде от источника, распределённого с заданной плотностью в конечной области. Дислокации Вольтерра. Линия дислокации и вектор Бюргерса. Перемещения в среде от дислокации Вольтерра. Формула Бюргерса. Применение формулы Бюргерса для случая винтовой дислокации. Применение формулы Бюргерса для случая краевой дислокации. Условия совместности для внешних деформаций. Дифференциальный оператор второго порядка Ink (несовместность). Оператор Гамильтона и правила работы с ним. Представление Гельмгольца для вектора. Представление Крёнера для тензора. Постановка задачи о внутренних напряжениях в бесконечной среде. Тензор функций напряжений Крёнера. Выражение для тензора функций Крёнера через компоненты тензора несовместности. Тензор плотности дислокаций. Смысл и размерность его компонент. Представление тензора несовместности через тензор плотности дислокаций. Выражение тензора напряжений Крёнера через параметры дислокации. Формула Пича-Келера для напряжений от дислокации.
Литература
1. Эшелби Дж. Континуальная теория дислокаций. ИЛ, Москва, 1963. с. 197-214.
2. Крёнер Э. Общая континуальная теория дислокаций и собственных напряжений. Мир, Москва, 1965.
3. Фридель Ж. Дислокации. Перевод с английского под ред. Ройтбурда А.Л. Мир, Москва, 1967.
4. Лихачев В.А., Волков А.Е., Шудегов В.Е. Континуальная теория дефектов. Структурно - аналитическая механика. Ленинград. Изв-во ЛГУ, 1986.
5. Гольдфайн И.А. Векторный анализ и теория поля. Наука, Москва, 1968.
6. Победря Б.Е. Численные методы в теории упругости и пластичности. Москва, 1995.
7. Новацкий В. Теория упругости. Мир, Москва, 1975.
8. Схоутен Я.А. Тензорный анализ для физиков. Наука, Москва, 1965.
Как проходит
дистанционно, Четверг 16-45
Учебный год
2021/22
Дополнительная информация

The Perfect Crystal. The Brave's lattice. Real crystal. Defects in crystal structure. Point and linear defects. Dislocations. What is meant by dislocation density? The dimensionality of dislocation density. Influence of dislocations on material properties. The dependence of strength of metals on dislocation density. Macroscopic modeling of dislocations using a tubular sample as an example. Example of helical dislocations. Stress-strain state and displacements at tube points from helical dislocation. Bürgers vector and dislocation line in the case of helical dislocation. Solutions of equations of elasticity theory with singularities. The Kelvin problem. The force factor in the Kelvin's problem. Tensor of Kelvin. Determination of displacements in a homogeneous, isotropic medium in the case of a given distributed load on a line, surface and volume. Solutions with higher order singularities. Sources as force factors leading to solutions with features of higher order. A matrix of sources. Double force without and with torque. Center of dilatation. Center of rotation. Determination of displacements in a medium from a source distributed with a given density in a finite area. Volterra dislocations. Dislocation line and Buergers vector. Displacements in a medium from a Wol- terre dislocation. Buergers formula. Application of Buergers formula to the case of helical dislocation. Application of Buergers formula to the case of edge dislocation. Cohesion conditions for external deformations. Second order differential operator Ink (incompatibility). The Ga-Miltonian operator and rules for dealing with it. The Helmholtz representation for a vector. The Kroehner representation for a tensor. Statement of the problem of internal stresses in an infinite medium. Tensor of Kröner stress functions. Expression for the Kröner function tensor through the components of the incoherence tensor. The dislocation density tensor. Meaning and dimensionality of its components. Representation of incoherence tensor through dislocation density tensor. Expression of Kröhner stress tensor through dislocation parameters. Peach-Kehler formula for dislocation stresses.