Название спецкурса на русском языке
Дополнительные главы геометрии
Перевод названия курса на английский язык
Advanced Topics in Geometry
Авторы курса
С.В.Смирнов
Целевая аудитория
2 курс
Подразделение
[Кафедра высшей геометрии и топологии]
Семестр
Годовой
Тип курса
Спецкурс по выбору студента
Аннотация
Предварительная программа
1. Вещественные и комплексные аффинные преобразования, соответствующие группы. Аффинные преобразования плоскости, как взаимно-однозначные преобразования, переводящие прямую в прямую. Изометрические преобразования, теорема о структуре изометрического преобразования.
2. Вещественные и комплексные проективные пространства, однородные координаты. Проективные преобразования. Метрическая, аффинная и проективная классификация квадрик (вещественный и комплексный случай).
3. Вещественная проективная прямая, двойное отношение четырех точек. Проективные преобразования и проектирования.
4. Комплексная проективная прямая. Свойства дробно-линейных отображений. Комплексный язык в геометрии.
5. Поляритет на проективной плоскости. Проективная двойственность, двойственная квадрика.
6. Классические проективные теоремы на вещественной проективной плоскости (теоремы Паппа, Паскаля, Брианшона).
7. Кубические кривые, приводимость, особые точки. Пересечение кубики и прямой. Кубики на проективной плоскости. Комплексные проективные кубики. Гессиан, точки перегиба.
8. Приведение неособой кубики к нормальной форме Вейерштрасса.
9. Сложение на кониках, вещественный и комплексный случай.
10. Групповой закон на кубике.
11. Некоторые вопросы перечислительной геометрии: сколько существует квадрик, проходящих через заданные точки и касающиеся заданных прямых?
12. Кватернионы, параметризация Кэли-Клейна и углы Эйлера.
13. Сферическая геометрия: группа движений, прямые, окружности, сферическая тригонометрия.
14. Стереографическая проекция, конформность. Сферическая геометрия на плоскости. Группа движений.
15. Геометрия на псевдосфере мнимого радиуса. Группа движений.
16. Стереографическая проекция псевдосферы. Модели Пуанкаре геометрии Лобачевского в единичном круге и в верхней полуплоскости. Группы движений.
17. Метрические соотношения в геометрии Лобачевского: теоремы синусов и косинусов, формулы для длины окружности и площади круга. Неизометричность евклидовой геометрии и геометрии Лобачевского.
18. Модель Клейна геометрии Лобачевского. Связь с моделью Пуанкаре.
19. Три типа собственных движений геометрии Лобачевского.
20. Замощение треугольниками сферы и плоскости Лобачевского. Модулярная группа, ее фундаментальная область.
21. Теорема Пуанкаре о фундаментальном многоугольнике на плоскости Лобачевского.
22. Пространство Лобачевского.
23. Выпуклые множества в аффинном пространстве, выпуклые многогранники.
24. Теорема Минковского Вейля о выпуклых многогранниках.
25. Плюккеровы координаты подпространства, грассманиан. Вложение грассманиана в проективное пространство. Соотношения Плюккера.
26. Пфаффиан и его свойства.
27. Нормальная форма Фробениуса линейного оператора.
Как проходит
вторник, 16:45, ауд. 14-03
Учебный год
2021/22