Теория игр
Аукционы и сети: статические игры нескольких игроков.
Обратная индукция и повторяющиеся игры.
Агрегирование предпочтений: выборы, социальное соглашение, справедливое распределение.
Равновесие Нэша для статических игр с конечным пространством стратегий.
Эволюционно стабильные стратегии (ESS) и репликаторная динамика (RD).
Динамические игры и динамическое программирование.
Игры с непрерывным пространством состояний.
Вводные сведения: геометрическая теория риск-нейтральных мер.
Теоретико-игровые истоки законов риск-нейтральности.
Радужные опционы в дискретном времени.
Непрерывный предел по времени: обобщенные уравнения Блэка-Шоулза.
Ценообразование кредитных деривативов.
Игры Дынкина и игровые опционы.
Динамический закон больших чисел (ЗБЧ): основные
идеи и строгие результаты.
Динамическое управление среднего поля с основными игроками.
Игры среднего поля (MFGs) для моделей с конечным
числом состояний.
O. A. Malafeyev V. N. Kolokoltsov. Understanding Game Theory. World Scientific 2010. Second Edition, 2020.
R. Carmona и F. Delarue. Probabilistic Theory of Mean Field Games with Applications, v. I, II. Probability Theory and Stochastic Modelling v. 83, 84. Springer, 2018.
Alexander Schied Hans F ̈ollmer. Stochastic finance: an introduction in discrete time. Fourth revised and extend edition, 2016.
Yuri Kifer. Dynkin’s games and Israeli options. ISRN Probability and Statistics, 2013.
Подробная информация о курсе: https://vega-education.org/courses#scourses
Теория игр – это математическая дисциплина, целью которой является моделирование различных взаимодействий живых организмов в количественном выражении. Теория игр, как универсальный метод анализа социальных взаимодействий, находит широкое применение в экономике, в теории управления, финансовой математике, эволюционной биологии, социологии, психологии и политике, при моделировании различных социальных процессов, в частности, процессов демократических выборов, процессов справедливого распределения ресурсов, процессов контроля над вооружениями и т.д.
Курс предназначен для всех желающих познакомиться с основными идеями и методами теории игр.
Теория игр является математической дисциплиной. Поэтому для полноценного понимания требуется иметь хотя бы базовые знания математического анализа, линейной алгебры, дифференциальных уравнений и теории вероятностей. Тем не менее, многие идеи теории игр можно объяснить без использования серьезной математики. Чтобы сделать курс более доступным для широкой аудитории, первая его часть специально разработана для объяснения основных идей без применения продвинутой математики. Здесь мы также уделим время историческим аспектам, связанным с жизнью основателей теории. Требования к математической подготовке аудитории возрастают ко второй части курса.
Курс является ёмким и охватывает широкий круг проблем и понятий. К ним относятся равновесие Нэша, аукционы, парадокс Браеса, эгоистичная маршрутизация, метод обратной индукции, модели голосования и справедливого распределения, эволюционные игры, эволюционно-стабильные стратегии, динамическое программирование, уравнение Гамильтона-Якоби-Беллмана, игры с бесконечным временем и компьютерные турниры. Также рассматриваются вопросы ценообразования финансовых инструментов (опционы и кредитные деривативы), теория Блэка-Шоулза и игровые опционы, игры с большим числом игроков в статистическом пределе, игры среднего поля, модели сотрудничества и по-
строения коалиций. Примеры включают в себя игры гонки вооружений, эксплуатации общих ресурсов, социальные дилеммы (битва полов, игра полового соотношения, игра в жертвование), модели инспекции и коррупции, моделирование антитеррористических мер, а также биологическую и генетическую передачу информации.