Автоматы в лабиринтах
Название спецкурса на английском языке
Automata in labyrinths
Пререквизиты
Отсутствуют
Целевая аудитория
3-6 курс, магистранты
Подразделение
[Кафедра МаТИС]
Семестр
Полгода (осень)
Тип курса
Спецкурс по выбору студента
Учебный год
2024/25
Список тем
Лабиринты: прямоугольные, мозаичные, шахматные.
Перемещение независимых систем автоматов в лабиринтах.
Возможность обхода конечных мозаичных лабиринтов конечными автоматами.
Теорема Будаха-Подколзина (невозможность обхода конечным автоматом всех мозаичных лабиринтов).
Обход автоматом конечных односвязных шахматных лабиринтов.
Обход конечным автоматом конечных лабиринтов с ограниченными внутренними дырами.
Перемещение в лабиринтах коллективов автоматов.
Периодичность поведения системы автоматов в конечных лабиринтах.
Пример непериодического поведения коллектива автоматов.
Автоматы со счётчиками.
Обход произвольных конечных шахматных лабиринтов автоматом со счётчиком.
Обход произвольных конечных шахматных лабиринтов коллективом автоматов.
Обход коллективом автоматов лабиринтов с одной дырой.
Постановка задачи преследования в шахматных лабиринтах.
Поведение конечного автомата в L0.
Задача преследования независимой системой хищников независимой системы жертв в L0.
Поведение конечного автомата в L1.
Задача преследования независимой системой хищников независимой системы жертв в L1.
Поведение конечного автомата в L2(l).
Задача преследования независимой системой хищников независимой системы жертв в L2(l).
Поведение конечного автомата в L3(l) и L4.
Задача преследования независимой системой хищников независимой системы жертв в L3(l) и L4.
Поимка данной жертвы в L0 коллективом хищников.
Существование универсального коллектива хищников в L0.
Существование универсального коллектива хищников в L1, L2(l), L3(l) и L4.
Задача преследования коллективом хищников независимой системы жертв в L5(l).
Нерешённые лабиринтные задачи.
Перемещение независимых систем автоматов в лабиринтах.
Возможность обхода конечных мозаичных лабиринтов конечными автоматами.
Теорема Будаха-Подколзина (невозможность обхода конечным автоматом всех мозаичных лабиринтов).
Обход автоматом конечных односвязных шахматных лабиринтов.
Обход конечным автоматом конечных лабиринтов с ограниченными внутренними дырами.
Перемещение в лабиринтах коллективов автоматов.
Периодичность поведения системы автоматов в конечных лабиринтах.
Пример непериодического поведения коллектива автоматов.
Автоматы со счётчиками.
Обход произвольных конечных шахматных лабиринтов автоматом со счётчиком.
Обход произвольных конечных шахматных лабиринтов коллективом автоматов.
Обход коллективом автоматов лабиринтов с одной дырой.
Постановка задачи преследования в шахматных лабиринтах.
Поведение конечного автомата в L0.
Задача преследования независимой системой хищников независимой системы жертв в L0.
Поведение конечного автомата в L1.
Задача преследования независимой системой хищников независимой системы жертв в L1.
Поведение конечного автомата в L2(l).
Задача преследования независимой системой хищников независимой системы жертв в L2(l).
Поведение конечного автомата в L3(l) и L4.
Задача преследования независимой системой хищников независимой системы жертв в L3(l) и L4.
Поимка данной жертвы в L0 коллективом хищников.
Существование универсального коллектива хищников в L0.
Существование универсального коллектива хищников в L1, L2(l), L3(l) и L4.
Задача преследования коллективом хищников независимой системы жертв в L5(l).
Нерешённые лабиринтные задачи.
Список источников
http://intsys.msu.ru/magazine/archive/v12(1-4)/volkov-137-158.pdf
http://intsys.msu.ru/magazine/archive/v11(1-4)/volkov-361-402.pdf
http://intsys.msu.ru/magazine/archive/v11(1-4)/volkov-361-402.pdf
Дополнительная информация
Рассматриваются классические результаты по обходу мозаичных лабиринтов независимыми системами и коллективами автоматов, авторские результаты по задаче преследования в конечных и бесконечных шахматных лабиринтах. Наиболее интересный результат - существование в бесконечных лабиринтах простого вида универсального коллектива хищников, ловящего любую конечную независимую систему жертв. Также в рамках курса изучается программирование на коллективах автоматов.
День недели
четверг
Время
18:30-20:05
Аудитория
436
Аудитория первого занятия
436
Статус курса
Запись открыта
Форма записи на курс
Заполнение формы записи на курс доступно только студентам. Для записи на курс авторизуйтесь, пожалуйста, в студенческом аккаунте.