Математические модели в задачах обогащения руд
Уравнения движения вязкой суспензии с многокомпонентными твердыми включениями и численные алгоритмы решения данных уравнений.
Моделирование дробления и измельчения природных композитов: обобщенные критерии Кулона-Мора и Ранкина.
Эффективные алгоритмы численного решения уравнений механики разрушения с обобщенными критериями Кулона-Мора и Ранкина.
Пальцев Б. В., Чечель И. И. Конечно-элементная реализация итерационных методов с расщеплением граничных условий для систем Стокса и типа Стокса в шаровом слое, обеспечивающая 2-й порядок точности вплоть до оси симметрии // Журн. вычисл. математики и мат. физики. 2005 Т. 45, № 5 С. 846–889.
В.И. Мельник-Гайказян, А.А. Абрамов, Ю.Б. Рубинштейн Методы исследования флотационного процесса. - М.: Недра, 1990 - 301 с.
Shamina A. A., Zvyagin A. V., Shamin A. Y. Motion and self-motion of thin bodies in rarefied gas // Acta Astronautica. — 2024. https://doi.org/10.1016/j.actaastro.2024.10.037
Batchelor, George (2000). An introduction to fluid dynamics. Cambridge Mathematical Library (2nd ed.). Cambridge University Press. ISBN 978-0-521-66396-0. MR 1744638
В рамках курса рассматриваются задачи флотационного обогащения, гидросепарации, механического дробления и измельчения рудных полезных ископаемых. Процессы флотации и гидросепарации моделируются уравнениями движения вязкой суспензии с многокомпонентными твердыми включениями. Рассматриваются численные алгоритмы решения данных уравнений. Моделирование дробления и измельчения природных композитов основано на механике разрушения с обобщенными критериями Кулона-Мора и Ранкина. Рассматриваются эффективные алгоритмы численного решения уравнений механики разрушения с данными критериями.